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UNSTEADY FLOWS OF AN INHOMOGENEOUS

INCOMPRESSIBLE VISCOUS FLUID

UDC 517.95V. N. Monakhov1 and M. I. Zhidkova2

This paper deals with a theoretical analysis of the transfer of reactive impurities by open and filtration
flows of an incompressible viscous fluid. The first section of the paper studies the model of an
inhomogeneous incompressible viscous fluid, which is widely used in meteorology and oceanology, with
additional allowance for the drag of the magnetic field or porous medium. Another object of research
in this paper is the model of filtration of an inhomogeneous incompressible fluid in porous media
proposed by V. N. Monakhov (1977) (Section 2). In both models, hydrodynamic flows determine
the motion of the mixture as a whole and the temperature and concentration distributions of the
components of an inhomogeneous fluid are described by a common nonlinear system of equations of
diffusive heat and mass transfer.
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1. Diffusive Model of an Inhomogeneous Incompressible Viscous Fluid. 1.1. Equations of the
Model. The plane flows of inhomogeneous fluids are described by the following Navier–Stokes type equations for
the velocity u, pressure p, and density ρ of the mixture [1]:

ρ
(du
dt
− γu

)
− µ∆u +∇p = ρf , ∇ · u = 0;

dρ

dt
= 0. (1)

Here d/dt = ∂/∂t + (u · ∇), µ = const > 0 is the dynamic viscosity, and ρf is the external-force vector. The last
equation in (1) is the fluid incompressibility condition, and the relation ∇ ·u = 0 is a consequence of this condition
and the flow continuity equation ρt +∇ · ρu = 0.

The term ργu in (1) simulates the drag force of the magnetic field [2] or the porous medium (Joukowski
model [3, p. 23]). The coefficient γ = γ(x, s) is a specified function of the coordinates x = (x1, x2) and the vector
s = (s0, . . . , sm), whose components are the temperature s0 and the concentrations of the mixture components
si = ρi/ρ, i = 1,m (ρi are the densities of the components).

The nonlinear equations of convective diffusion for s = (s0, . . . , sm) are written as follows [4, 5]:

ρ
dsi

dt
−∇ ·

m∑
j=0

λij∇sj = hi(x, ρ, s), i = 0,m. (2)

Here hi (i = 1,m ) are the chemical-reaction rates, h0 =
m∑

i=1

cihi is the potential of the heat sources, and

qi = −
m∑

j=0

λij∇sj (i = 0,m ) are diffusion flows [5]. Often, hi (i = 1,m ) are expressed in divergent form in

terms of the chemical potentials ϕi: hi = ∇ · ϕi [4, 5].
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We note that for γ ≡ 0 and ∂f/∂si = 0, the diffusion equations (2) are separated from system (1) and are
solved after finding the velocity u, density ρ, and pressure p.

According to [5], the diffusion matrix D = {λij} [(i, j) = 1,m ] should obey the physically justified equality
m∑

i=1

qi = 0 (detD = 0). The conditions of chemical equilibrium for the diffusion process lead to the relation

m∑
i=1

hi = 0 [4]. Since for sk � 1 the effect of the remaining components sl (l 6= k) on the propagation of the kth

impurity is negligible, we have (λij , hi)|sk=0 = 0 (i 6= j and k = 1,m ).

Thus, the coefficients (λij , hi) of Eqs. (2) obey the following assumptions: (i)
m∑

i=1

λij = λij

∣∣∣
sk=0

= 0 (j 6= i);

m∑
i=1

hi = hl

∣∣∣
sk=0

= 0, (l, k) = 1,m. As will be shown later, conditions (i) provide the validity of the necessary

relation
m∑

i=1

si = 1. In addition, after the determination of the solution s(x, t) of system (2), the first condition of

(i) allows one to find the velocities ui of the mixture components from the formulas [4]: ui = u + qiρ
−1
i (i = 1,m ).

The indicated properties are advantages of the adopted form (i) of diffusion flows. Generally speaking, the widely
used simplified form of diffusion flows in the form of Fick’s laws (−qi = di∇si, i = 1,m ) does not ensure that the

relation
m∑

i=1

si = 1 is satisfied, except for di = d (i = 1,m ) as is the case for binary mixtures [4, 5].

In the present paper, satisfaction of the following additional conditions is required: (ii) the augmented
diffusion matrix D0(δ) = {λij} [(i, j) = 0,m ] is quasitriangular, i.e., sup |λij | = δ � 1 for j > i, λii ≥ d > 0,
i = 0,m− 1, and λmj = −λm−1m−1, j = 1,m− 1.

According to these conditions, the matrix D0(0) is triangular. Boyarskii [6] proved that a steady-state
diffusion process with a general regular diffusion matrix D0 = {λij} [(i, j) = 0,m ] can be reduced to a diffusion
model with a quasitriangular matrix D0(δ) = RδD0R

−1
δ ∀ δ � 1, where Rδ is an invertible matrix. Therefore, in

the steady-state case, conditions (ii) can be assumed to be satisfied automatically.
1.2. Initial-Boundary-Value Problem. Let Ω ⊂ R2 be a domain with a smooth boundary ∂Ω ⊂ C2+α (α > 0),

Q = Ω × (0, T ), (γ1
i , γ

2
i ) (i = 1, l ) are adjacent arcs on ∂Ω, Γk

i = γk
i × (0, T ) (k = 1, 2, i = 1, l ), Γk = ∪l

1Γ
k
i ,

Ω0 = {x ∈ Ω, t = 0}, ∂0Q = Γ∪Ω0, Γ = Γ1∪Γ2, and Γ0 = Γ∩Ω0. We consider the following initial-boundary-value
problem:

(u−U)∂0Q = (ρ− ρ0)Ω0 = 0; U
∣∣∣
Γ

= (∇ ·U)Q = 0; (3)

(s− S)Ω0∪Γ1 = (∇sk · n−Gk)Γ2 = 0, k = 0,m. (4)

Here U(x, t), S(x, t), G(x, t, ρ, s) = (G0, . . . , Gm) are the continuations in Q for the vectors specified on ∂0Q, and,

from physical considerations, we have Si ≥ 0 (i = 1,m ),
m∑

i=1

Si = 1, and 0 < r0 6 ρ0(x) 6 r1 <∞ (x ∈ Ω).

It is assumed that the vectors (γ, λij , hi,f)(x, s) of the coefficients of Eqs. (1) and (2) and the boundary
functions (ρ0, ρ0

t ,∇ρ0)(x), (U ,S)(x, t), and G(x, t, ρ, s) in (3) and (4) are uniformly continuous after Hölder with
respect to all arguments:

‖(γ, λij ,∇λij , hi, ρ
0, ρ0

t ,∇ρ0,f ,U ,S,G)‖Cα(E) = M, α > 0. (5)

Here E = {(x, t) ∈ Q, ρ ∈ (r0, r1), s0 ∈ (θ0, θ1), sk ∈ (0, 1), k = 1,m } (θk, where k = 0, 1, are specified constants).
We note that assumptions (5) ensure, in particular, that zero order matching conditions are satisfied for

problem (1)–(4). In addition to assumptions (i) on coefficients (2), we require satisfaction of the following relations
for the boundary functions in (4):

m∑
k=1

Gk

∣∣∣
Γ2

= Gi

∣∣∣
sj=0

= 0, (i, j) = 1,m. (6)
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1.3. Regularized Problem. We continue the vectors (γ, λij , hk,f) of the coefficients of Eqs. (1) and (2) and
(ρ0,U ,S,G) of the boundary functions in (3) and (4), which are specified on the set E = Q × (r0, r1) × (θ0, θ1)
× (0, 1)m, into the entire space Rn (n = m+ 5): over the variables (ρ, s), the continuation is performed up to the
extreme values of these components, and over (x, t) with preservation of smoothness up to functions that are finite
for |(x, t)| � 1.

We introduce the Steklov averaging operation for the functions f(y), y ∈ Rn (n 6 m+ 5):

f(y, ε) = ε−n

∫
|z−y|<ε

ω(|z − y|ε−1)f(z) dz ≡ Rn
ε (f | y), ε > 0.

Here ω(ξ) is a smooth function (averaging core) which is equal to zero for ξ ≥ 1 and
∫

|ξ|<1

ω(ξ) dξ = 1; Rn
ε (f | y) is a

smoothing operator which is linear in f , y = (x, t, ρ, s0, . . . , sm) ∈ Rn (n = m+ 5). The coefficient γ = γ[x, s(x, t)]
in (1) is treated as a composite function which is continued over (x, t) into R3 and over s into Rm+1, and it is
assumed that γ(x, t, ε) = R3

εγ[x, s(x, t)]. In Eq. (2), the averaging operation is also applied to the coefficients ρ(x, t)
and u(x, t) continued into R3: ρ(x, t, ε) = R3

ε(ρ), and u(x, t, ε) = R3
ε(u). We note that because the smoothing

operator Rn
ε (f) is linear, the properties (i) of the diffusion matrices D = {λij} [(i, j) = 1,m ] are retained for

D(ε) = {Rn
ε (λij)}. Finally, we complete the regularization of problem (1)–(4) by changing the diagonal elements

in D(ε) assuming that

λii(y, ε) = Rn
ε (λii) + ε, i = 1,m.

Then in (i), we have
m∑

i=1

λij(y, ε) = ε, i 6= j and denote the thus changed assumptions (i) by (i)ε. We omit

the argument ε in the coefficients of the regularized problem (1)–(4), considering them fairly smooth functions.
We first prove the solvability of the regularized problem (2), (4) for s, assuming that one of the sets Γ1 or Γ2

is empty, i.e., (4) is the first (Γ2 = Ø) or second (Γ1 = Ø) initial-boundary-value problems. Then, sequentially
considering Eqs. (2) for sk(x, t) and taking into account the quasitriangular nature of the augmented diffusion
matrix D0 = {λij}, (i, j) = 0,m [assumptions (ii)] due to choice of a small parameter δ � 1, we obtain Schauder’s
estimates for s(x, t) in the space H2+α(Q) = C

2+α,1+α/2
x,t (Q) [8, p. 364]

s
(2+α)
Q ≡ ‖s‖H2+α(Q) 6 M(ε). (7)

Generally, for Γk 6= Ø (k = 1, 2) estimate (7) becomes

s
(2+α)
Qτ

6 M(ε, τ), Qτ = Q\Oτ (Γ1 ∩ Γ2), (8)

where Oτ is the τ -neighborhood of the conjugation lines Γ1 ∩ Γ2 of the boundary conditions in (4).
We substitute the solution s(x, t) of the regularized problem (2), (4) into the coefficient γ(x, s) of Eq. (1)

and consider the regularized problem (1), (3). For the solution (u, p, ρ) of this problem, we obtain

u
(2+α)
Q + ∇p (α)

Q + ρ
(1)
Q 6 M0(ε), (ρ, ρt,∇ρ) (α)

Q 6 M0. (9)

The first of the estimates (9) is directly proved in [1, p. 133], and the second is proved there in the weaker form for
ρ(x, t) ∈ C1(Q). Hölder’s continuity of the functions (ρt, ρx1 , ρx2) follows from the reasoning for the function ρ(x, t)
given in [1, p. 130]. Estimates (7)–(9) allow one, using Schauder’s theorem, to prove that the regularized problem
(1)–(4) has a solution (s,u, p, ρ).

Since, physically, the functions sk(x, t) (k = 1,m ) are the concentrations of the components of an inhomo-
geneous fluid, they should satisfy the following relations:

m∑
k=1

sk(x, t) = 1; 0 6 sk(x, t) 6 1, k = 1,m. (10)

To prove (10), we combine both parts of Eqs. (2) for sk(x, t) (k = 1,m) and, taking into account condition (i)ε,

we obtain the parabolic equation ρ ds/dt = ε∆s for the sum of concentrations s =
m∑

k=1

sk. Since s|Ω0∪Γ1 = 1 and
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∇s · n|Γ2 = 0 [condition (6)], we have s(x, t) = 1 [(x, t) ∈ Q] according to the maximum principle. Then, by virtue

of the equality
m−1∑
k=1

sk = 1− sm, Eq. (2) for sm(x, t) is written as

ρ
dsm

dt
−∇ ·

( m∑
j=0

λ̄mj∇sj

)
= hm,

where λ̄m0 = λm0, λ̄mj = 0 (j = 1,m− 1 ), and λ̄m = λm−1−
m−1∑
k=1

λkm, i.e., formally we can set λm = λm−1 in (2).

We continue the coefficients λij and hi [(i, j) = 1,m ] for sk 6 0 (k = 1,m ) by their extreme values:

(λij , hi)
∣∣∣
sk<0

= 0, i 6= j, λii

∣∣∣
sk<0

= λii(x, 0).

Assuming that min sk(x, t) < 0 is reached at a certain internal point (xk, tk) ∈ Q (k = 1,m ), we arrive at
inconsistency with the maximum principle since in the neighborhood of this point, the equation for sk(x, t) is
homogeneous with respect to the derivatives: ρ dsk/dt−∇ · (λk∇sk) = 0.

Thus, the validity of relation (10) is established.
1.4. Existence Theorem. For the solution (u, p, ρ, s) of the regularized problem (1)–(4), we establish the

validity of estimates of the form (7)–(9) with constants independent of the regularization parameter ε.
Let us define the following spaces of the functions v(x, t) and (x, t) ∈ Q and the norm in them:

Bk,k+1(Q) = L∞(0, T ; Jk(Ω)) ∩ L2(0, T ; Jk+1), k = 0, 1,

Jk(Ω) = {v ∈W k
2 (Ω),div v = 0}, k = 0, 1, 2 (W 0

2 ≡ L2),

‖v‖(k,k+1)
Q = sup ‖v‖(k)

Ω +

T∫
0

(‖v‖(k+1)
Ω )2 dt, k = 0, 1,

‖v‖(k)
Ω = ‖v‖W k

2 (Ω), k = 0, 1, 2.

For the other spaces, we adopt the standard notation of the norms from [1, 8].
For the solution of problem (1), (3) for γ = 0, Antontsev and Kazhikhov [1, chapter III] proved the following

estimates, which are valid for 0 6 γ 6 M0 <∞:

‖u‖(1,2)
Q 6 M, ‖(∇p,ut)‖2,Q 6 M, ρ

(β)
Q 6 M, β > 0. (11)

Here the constant M in (11) depends on ‖U‖(1,2)
Q , ‖Ut‖2,Q, ‖ρ0‖C1(Ω), ‖f‖2,Q and sup |γ|.

We now address problem (2), (4) for the vector s(x, t) and first consider the case where Γ2 = Ø or Γ1 = Ø.
The well-known results for the first and second initial-boundary-value problems (2), (4) lead to the following
estimates [8, p. 364]:

s
(α)
Q 6 M1, ‖s‖(2)q,Q 6 M1, α > 0, q > 2. (12)

Here ‖ · ‖(2)q,Q = ‖ · ‖W 2,1
q (Q), and the constant M1 depends from M0 in (10), ‖S,G‖(2)Q , and sup |hk|.

The second estimate in (12) is obtained using the standard unity partition method and by considering the
equations for si(x, t) with the “frozen” coefficients λii(xk, tk); (xk, tk) ∈ Qk, where Qk ⊂ Q is an elementary volume
[1, pp. 234–235].

Reverting to problem (1), (3) with the functions f [x, t, s(x, t)] and γ[x, s(x, t)] ∈ Hα(Q) ≡ Cα,α/2(Q), we
arrive at the estimates [1, p. 132]

u
(2+α)
Q + ∇p (α)

Q + ρ
(1+α)
Q 6 M2, (13)

where M2 depends on M1 in (12), U
(2+α)
Q , ρ0 (1+α)

Ω , and f
(α)
Q . By virtue of (13), for problem (2), (4) we

obtain

s
(2+α)
Q 6 M3, (14)

where M3 is a function of M2 and S,G
(2+α)
Q .
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Generally, when Γk 6= Ø (k = 1, 2), i.e., (2), (4) is a mixed initial-boundary-value problem, proceeding as in
Sec. 1.3, we obtain

s
(2+α)
Qτ

6 M5(τ), Qτ = Q\Oτ (Γ1 ∩ Γ2), (15)

which for (u, p, ρ) implies the estimate

u
(2+α)
Qτ

+ (∇p, ρt,∇ρ) (α)
Qτ

6 M6(τ). (16)

Passing to the limit as ε→ 0 for the regularization parameter ε, we arrive at the following statement.
Theorem 1. Let assumptions (i), (ii), (5), and (6) be satisfied. Then if Γ2 = Ø or Γ1 = Ø, there is a

classical solution (u, p, ρ, s) ∈ H2+α ×Hα ×H1+α ×H2+α of problem (1)–(4). If Γk 6= Ø, k = 1, 2, the solution of
problem (1)–(4) also exists and u ∈ B1,2(Q) ∩H2+α(Qτ ), ∇p ∈ Hα(Q), ρ ∈ Hα(Q) ∩H1+α(Qτ ), s ∈ H2+α(Qτ ),
and α > 0.

2. Filtration of an Inhomogeneous Incompressible Fluid in a Porous Medium. 2.1. Formulation
of the Problem. To describe the plane filtration process, we use the following model proposed in [3, 7]:

−u = K∇p, ∇ · u = 0; σρt + u∇ρ = 0. (17)

Here K(x, s) = K0(x)µ−1(s) [K0 is the positively defined filtration tensor; µ = exp
( m∑

i=1

si lnµi

)
, and µi(s) are

the dynamic viscosities of the components] and σ(x) is the porosity coefficient. As in system (1), the last equality
is the condition of incompressibility of the mixture and the relation ∇ · u = 0 is a consequence of this condition
and the flow continuity equation σρt + ∇ · (ρu) = 0. The first relation in (17) is generalized Darcy’s law. The
temperature s0 and the concentrations si = ρi/ρ (i = 1,m ) of the mixture components satisfy Eqs. (2), whose
coefficients obey assumptions (i) and (ii).

The curve ∂Ω is divided into adjacent arcs l1i and l2i (i = 1, n ) and, in accordance with this, the surface of
the cylinder Γ = ∂Ω × (0, T ) consists of the sets Λk = ∪n

1 l
k
i × (0, T ) (k = 1, 2) and Γ = Λ1 ∪ Λ2, and, generally

speaking, Λk do not coincide with Γk in (4). The boundary conditions (4) for the vector s are conserved, and
conditions (3) for (u, p, ρ) are replaced by the following:

p
∣∣∣
Λ1

= p0, u · n
∣∣∣
Λ2

= −U ; (ρ− ρ0)∂Ω = 0. (18)

If Λ1 = Ø, we additionally require that
∫
Γ

p dx dt =
∫
Γ

U dxdt = 0.

2.2. Solvability of the Filtration Problem. We apply the regularization of Sec. 1.3 to problem (2), (4) for the
vector s(x, t) and perform Steklov’s averaging of the augmented coefficients (K, ρ, σ) of Eqs. (17) and the boundary
functions (p0, ρ

0, U) in (18). The classical solvability of the regularized compatible problem (2), (4), (17), (18)
follows, according to Schauder’s theorem, from the validity of the following estimates for its solutions (s, ρ, p):

|s|(2+α)
Qτ

6 M(ε), |ρ|(1+α)
Qτ 6 M(ε), |p|(2+α)

Qτ 6 M(ε). (19)

Here Qτ = Q \Qτ (Λ1 ∩ Λ2) (Qτ is the τ -neighborhood Λ1 ∩ Λ2) and Qτ = Q \Oτ (Γ1 ∩ Γ2)).
If Λ1 or Λ2 are empty, then Qτ = Q in (19). The first and second estimates (19) coincide, according to (15)

and (16), and the third estimate is established in [1, p. 239].
To prove estimates of the form (19) that are uniform in ε, we first consider the regularized problem (17),

(18) for (u, p, ρ).
Let ∂Ω ⊂ C2+α

∗ [1, p. 231], i.e., at each point x that does not belong to Λ1 ∩ Λ2, the boundary is locally
straightened, and in the neighborhood of the points x ∈ Λ1 ∩ Λ2, it is locally mapped onto the right angle. We
assume that

ln (Kξ, ξ) + ln(σ, ρ0) (α)
Ω + ‖(D1p0, U)‖q,∂Ω 6 N1 <∞, (20)

where |ξ| = 1, q > 2, and Dk are the derivatives along ∂Ω. Then, according to [1, p. 260], we have

‖∇p‖q,Ω + p
(α)
Ω 6 N2(N1), (q, α) > 0; | ln ρ| 6 N1. (21)
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Reverting now to problem (2), (4) for s and proceeding as in Sec. 1.4, we obtain

‖s‖(1,0)
q,Qτ

+ s
(α)
Qτ

6 N3(N2) (q > 2, α > 0), (22)

In this case, if Γ1 or Γ2 are empty, then Qτ = Q.
Let, in addition to (19), the following inequality be satisfied:

|(Kx,Ks0 , . . . ,Ksm
)|+ ‖(D2p0, D

1U)‖q,∂Ω + (σ,∇ρ0) α
Ω 6 N4, (23)

where q > 2 and α > 0. Estimates (21) and (22) allow an increase in the smoothness of the solution of problem
(17), (18):

‖u‖(1)q,Ω + u
(α)
Qτ

+ ρ
(α)
Qτ

6 N5(N4) (q > 2, α > 0), (24)

and Qτ = Q if one of Γk (k = 1, 2) is empty. Inequalities (24) for u(x, t) are established in [1, p. 236], and those
for ρ(x, t) in [1, p. III]. Taking into account (24), for the solution s(x, t) of problem (2), (4), we obtain estimates of
the form (19) with the constant factor independent of ε:

s
(2+α)
Qτ

6 N6 (α > 0). (25)

Here Qτ = Q, if Γ1 = Ø or Γ2 = Ø.
For arbitrary functions ϕ(x) ∈W 1

2 (Ω) (ϕ|Λ1 = 0) and ψ(x, t) ∈W 1
2 (Q) (ψ|∂Q = 0), we introduce the integral

identities

(u,∇ϕ)Ω = (U,ϕ)Λ2 , (σρ, ψt)Q + (uρ,∇ψ)Q = 0, (26)

where (f, g)E =
∫
E

fg dE.

Passing to the limit as ε→ 0 in problem (2), (4) for s(x, t, ε) and in the integral identities (26) for u(x, t, ε),
ρ(x, t, ε), we arrive at the following statement.

Theorem 2. Let assumptions (i) (ii), (5), and (6) be satisfied for problem (2), (4) and assumptions (19)
and (23) for problem (17), (18). Then, the compatible problem (2), (4), (17), (18), which describes the filtration
process of an inhomogeneous incompressible viscous fluid in porous media, has at least one solution (u, ρ, s) that
satisfies equalities (2) and (4) for s, the integral identities (26), and the conditions (p− p0)Λ1 = (ρ− ρ0)Ω = 0 for
(u, ρ). In this case, u(x, t) ∈ L∞[0, T ;W 1

q (Ω)]∩Hα(Qτ ), ρ(x, t) ∈ Hα(Qτ ), s(x, t) ∈ H2+α(Qτ ), q > 2, and α > 0.
If Γ1 = Ø or Γ2 = Ø, then Qτ = Q.
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